Questions and challenges of an underground multi-kton LAr TPC detector

F. Lanni Brookhaven National Laboratory

Outline

- Introductory Remarks
- Detector Optimization
- Vessel construction and integration
- Cryogenics and Purification
- Readout

Introductory Remarks

- There is a growing interest in LAr TPCs due to its unique capabilities:
 - 3D-imaging: full event topology reconstruction
 - Precision calorimetric measurements
 - PID through dE/dx (low momentum particles)
 - Higher sensitivity to v physics and for some of the proton decay channels (e.g. p→ Kv)
- However the feasibility of multi kiloton detector is yet to be proven.
 - R&D plans are growing fast. Getting organized. Needs support.
- Technical challenges and questions here:
 - 0th order: applicable to multi-kton scale (5k,20k,100k)
- Not addressing questions related to the near detector (smaller scale): microBooNE detector?

Detector Designs

Controlled

"Swimming pool"

Different designs and proposals over the last few years:

LArTPC

MODULAr

hep-ph 07041422

4/25/08

FERMILAB-FN-0776-E

Detector Design and Optimization

(rewording B. Fleming presentation @ SLAC P5 meeting – Feb 2008)

Depth? Modularized Option. K xL x M x N=100ktons (each of size K tons) Optimization against: Costs (Cavern and Vessel) Technical Feasibility KxL>5ktons Schedule and Staging options Risks (e.g. purification/ N caverns contamination compromising detector operations and performance) Safety (recovery of LAr for severe failures) M vessels in a cavern

Cryostat Vessel

- Construction:
 - Non-"evacuable"
 - Single Vessel containment + Insulation?
 - Industrial vessels? LNG tanks?
 - Rock stability: can the walls be used a structural element?
 - Materials: glass foam insulation, inner wall liner
 - Heat Loads
 - Refrigeration and cooling loop
- Access, Assembly and Integration:
 - Single access: through top door?
 - Contamination: clean room requirement?
 - Heavy Material handling
 - Assembly sequence

Cryogenics and Safety

- Vessel needs a relief valve and a way to evacuate LAr in case of an accident
- Do we want to try to recover LAr in case of an accident?
 - Large storage facility above ground and pumps to evacuate the Argon
 - Extra vessel underground?
- Catastrophic failures:
 - Abandoned tunnel as "dump" and then slowly get the L/G Ar out from that tunnel?
- Safety aspects during assembly of the experiment
- …in regular running

Cryogenics: Heat Load

- Example of a ~5kton detector
- Heat Load: 15kW
 - through the walls and the floor: 9kW
 - Roof+FT (guesstimate): 6kW
 - Boiloff 0.15% of the total volume per day
- Scaling to a ~20kton detector: 35-40kW
- Assuming a ~20kton vessel with cold electronics
 - 40mW/channel
 - ~250k-1M channels
 - Heat Load: 10-40kW
- Total Load: ~50-80kW(for a 20kton), [250-400kW (for a 100kton detector)]
- Refrigerator and LN2 storage nearby? Surface?

4/25/08

Cryogenics and Purification

- Electron drift several (2-5) meters, i.e. T_D~3-8ms
 - Maximum Drift Path
 - Drifting Electric Field

- $\tau \simeq 300 \mu \mathrm{s} \times \frac{1.0 \mathrm{ppb}}{\mathrm{N}(\mathrm{O}_2)}$
- Purity Levels (O2 equivalent) allowed
- Other (than O2) electronegative impurities?
- Purification Systems:
 - Gas vs. Liquid Phase (both ala Icarus?)
 - Re-circulation rate needed
 - Oxysorb (single pack ~120m3/day) and molecular sieves? Other devices?
 - Purification system near/(inside?) each vessel?
- Initial filling assuming no evacuation:
 - Purging (gas-cycles, impurity freeze-out through LN2??)
- LAr contamination: material testing for detector and readout construction

C. Montanari, Criodet-2, LNGS (Jun 2007)

Cryogenics and Purification

- Lots of R&D required
- Small scale Test Stands already existing at FNAL
 - ... being used or planned to be used also for microBooNE material testing for example
- Purging tests also planned at Fermilab on purity demonstrator vessel (20 tons)
 - ... and proposed by the microBooNE collaboration

Materials Test Station

Have tested two items and are developing systematic discipline (figuring out what it is telling us).

Readout and Detector Geometry

- Detector Layout Optimization:
- Assuming double-module geometry (HV middle plane, 2 readout plane set on the side)
 - Similar scheme as ModuLAr, geometry ala microBooNE
- Dimensions:
 - Maximize drift distance (limited by purity, HV)
 - Wire planes (1 collection, 2 induction planes, additional grid?)
 - Wire orientation
 - Wire length, pitch [3-6mm]
 - Materials (minimize resistance: SS+Au/Ag/Cu plating, CuBe)
 - Readout S/N
 - Wire Termination schemes
- Double-Module Dimension:
 - 2x4x8x15x1.4 = 1.3 ktons
 - 5kton: 4 double modules
 - 20 kton: 16 double modules

- ~2*2*15000/3(5) ~ 12-20k/module
- 5kton: 50-80k
- 20kton: 200k-320k
- 100kton: 1M-1.6M

(from microBooNE proposal – Oct 2007)

Readout Optimization

- Requirements and Optimization
 - "Track" resolution: shaper peaking time [1-2us]
 - S/N: minimization of noise: again peaking time and cold electronics
 - Sampling Frequency and Dynamic Range
 - Signal Processing/Optimal Filtering/RT Reconstruction (partly integrated in DAQ)
 - Architecture based on continuous wfm recording:
 - 0-suppression
 - Peak-finder/time-slice/Self-Triggering
 - Reduction of vessel penetrations: MUX'd architecture
- Trigger/T0 determination
 - PMTs, fiber-based optical readout

Readout: Cold Electronics

Best S/N obtained by:

- Minimizing the length of connections between detector elements and preamplifier inputs
- Cold electronics to (pMOS processes) optimized performance at cryogenic temperature
- Factor ~3 at least better than at room T

(from MicroBooNE proposal's addendum – Mar 2008)

- Extensive R&D Program required:
 - Assess p-MOS technology at cryogenics temperature (packaging, reliability etc.)

Readout: MUX

- 100kton LAr ~ 250k-1M channels
- Issues:
 - Cable factory
 - Feedthroughs
 - Heat Load
 - S/N
- R&D on a multiplexed readout architecture and integration scale (analog+digital?) of possible ASIC
 - Minimize power
 - 4 years (at least)
- Steps:
 - Analog Front-End (PA+Shaper, Peak Finder)
 - Analog Pipeline/ MUX
 - Digitization and transmission

Summary: R,D and R&D Programs

- Cavern: depth, shape, size, optimization
- Vessel Design: Materials, insulation, feedthroughs, cavern interface, access and assembly, integration issues
- Cryogenics: Refrigerator Size and location, LAr fill, dump and evacuation/recovery/storage.
- Purification: large system purification, purging during initial filling
- TPC design: wire plane structure, materials, geometry/layout optimization
- Readout: Low Noise Cryogenics Electronics, MUX and Data Reduction
- Readout/Trigger: T0 determination (light detection?)
- Physics R&D: Signal Processing, Optimal Filtering techniques, Event reconstruction
- Safety Issues at each step we need to understand the safety issues and requirements of working underground.

Summary/Conclusions

- LAr TPC are powerful detectors for a wide "range" of physics
- Ultimate physics capabilities need more detailed studies
- Technical challenges need to be understood to assess feasibility of large scale detectors:
 - First understand issues related to underground operations of cryogenic detectors
 - ... some are common to the ones of large WC
- Second to make rapid progresses the R&D program needs:
 - Organized working groups/large collab.
 - Significant Resources
 - Financial Support!